Part Number Hot Search : 
IRG4PH20 TGA1045 SMAJ30A B105M 1C30UM 29K4FK 1N6355US EP9307
Product Description
Full Text Search
 

To Download IRF1503PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet ? power mosfet this design of hexfet ? power mosfets utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this hexfet power mosfet are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating. these combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. s d g v dss = 30v r ds(on) = 3.3m ? i d = 75a description  www.irf.com 1 advanced process technology ultra low on-resistance 175c operating temperature fast switching repetitive avalanche allowed up to tjmax features IRF1503PBF parameter typ. max. units r jc junction-to-case ??? 0.45 r cs case-to-sink, flat, greased surface 0.50 ??? c/w r ja junction-to-ambient ??? 62 thermal resistance to-220ab parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) 240 i d @ t c = 100c continuous drain current, v gs @ 10v (see fig.9) 170 a i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) 75 i dm pulsed drain current   960 p d @t c = 25c power dissipation 330 w linear derating factor 2.2 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy  510 mj e as (tested) single pulse avalanche energy tested value  980 i ar avalanche current  see fig.12a, 12b, 15, 16 a e ar repetitive avalanche energy  mj t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c absolute maximum ratings  typical applications industrial motor drive
  2 www.irf.com parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 30 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.028 ??? v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance ??? 2.6 3.3 m ? v gs = 10v, i d = 140a  v gs(th) gate threshold voltage 2.0 ??? 4.0 v v ds = 10v, i d = 250a g fs forward transconductance 75 ??? ??? s v ds = 25v, i d = 140a ??? ??? 20 a v ds = 30v, v gs = 0v ??? ??? 250 v ds = 30v, v gs = 0v, t j = 125c gate-to-source forward leakage ??? ??? 200 v gs = 20v gate-to-source reverse leakage ??? ??? -200 na v gs = -20v q g total gate charge ??? 130 200 i d = 140a q gs gate-to-source charge ??? 36 54 nc v ds = 24v q gd gate-to-drain ("miller") charge ??? 41 62 v gs = 10v t d(on) turn-on delay time ??? 17 ??? v dd = 15v t r rise time ??? 130 ??? i d = 140a t d(off) turn-off delay time ??? 59 ??? r g = 2.5 ? t f fall time ??? 48 ??? v gs = 10v  between lead, ??? ??? 6mm (0.25in.) from package and center of die contact c iss input capacitance ??? 5730 ??? v gs = 0v c oss output capacitance ??? 2250 ??? pf v ds = 25v c rss reverse transfer capacitance ??? 290 ??? ? = 1.0mhz, see fig. 5 c oss output capacitance ??? 7580 ??? v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance ??? 2290 ??? v gs = 0v, v ds = 24v, ? = 1.0mhz c oss eff. effective output capacitance  ??? 3420 ??? v gs = 0v, v ds = 0v to 24v nh electrical characteristics @ t j = 25c (unless otherwise specified) l d internal drain inductance l s internal source inductance ??? ??? s d g i gss ns   i dss drain-to-source leakage current s d g parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) ??? ??? showing the i sm pulsed source current integral reverse (body diode)  ??? ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.3 v t j = 25c, i s = 140a, v gs = 0v  t rr reverse recovery time ??? 71 110 ns t j = 25c, i f = 140a, v dd = 15v q rr reverse recoverycharge ??? 110 170 nc di/dt = 100a/s   t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) source-drain ratings and characteristics 240 960
  repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   starting t j = 25c, l = 0.049mh r g = 25 ? , i as = 140a. (see figure 12).  pulse width 400s; duty cycle 2%.   c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.
  www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0. 1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 25c vgs top 15v 1 0v 8 .0v 7 .0v 6 .0v 5 .5v 5 .0v bottom 4.5v 0. 1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 175c vgs top 1 5v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 4.0 5.0 6.0 7.0 8.0 9.0 10.0 v gs , gate-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 25v 20s pulse width 0 40 80 120 160 200 i d, drain-to-source current (a) 0 40 80 120 160 200 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 25v 20s pulse width fig 4. typical forward transconductance vs. drain current
  4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0.0 0.4 0.8 1.2 1.6 2.0 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0 40 80 120 160 200 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v i d = 140a 1 10 100 v ds , drain-tosource voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 1 10 100 v ds , drain-to-source voltage (v) 0 2000 4000 6000 8000 10000 c , c a p a c i t a n c e ( p f ) coss crs s ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd
  www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 0.001 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 175 0 40 80 120 160 200 240 t , case temperature ( c) i , drain current (a) c d limited by package fig 10. normalized on-resistance vs. temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 240a
  6 www.irf.com 25 50 75 100 125 150 175 0 200 400 600 800 1000 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 59a 100a 140a q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -
fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 1. 0 2. 0 3. 0 4. 0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a
  www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-07 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 10000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 50% duty cycle i d = 140a
  8 www.irf.com fig 17.       for n-channel hexfet  power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period         + - + + + - - -       ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"   
 v ds 90% 10% v gs t d(on) t r t d(off) t f   &' 1 ( 
#   0.1 %        + -  fig 18a. switching time test circuit fig 18b. switching time waveforms
  www.irf.com 9 ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 07/2010 data and specifications subject to change without notice. this product has been designed and qualified for industrial market. qualification standards can be found on ir?s web site. to-220ab package is not recommended for surface mount application. 

 
 

  
   
  int e rnat ional part number re ct if ier lot code as s e mb l y logo ye ar 0 = 2000 dat e code we e k 19 line c lot code 1789 e xample: t his is an ir f 1010 note: "p" in ass embly line pos ition indicates "l ead - f ree" in t he as s emb l y line "c" as s e mb le d on ww 19, 2000 notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/


▲Up To Search▲   

 
Price & Availability of IRF1503PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X